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The intermittency (multifractality) of turbulent velocity has been experimentally investigated through
the frequency-band-pass-filtered velocity signals. In inertial range frequencies of the band-pass filter, the
even number order moments of the signals show the scaling property on a nearly Gaussian distribution.
The scaling exponents of the 2nth order moments are a nonlinear function of the order 2n. The non-
linearity means the frequency (scale) -dependent deviation of the statistics law of the signals are from
Gaussian statistics. In dissipation range frequencies, the signals have no scaling property, and the devia-
tion of the statistics law becomes much greater at higher frequencies. Such deviations of the statistics
law are due to viscous effects, and reflect the breakdown of the self-similarity of turbulent velocity struc-

ture, that is to say its intermittent property.

PACS number(s): 47.27.—i, 02.50. —r, 03.40.Gc, 47.53.+n

I. INTRODUCTION

It is known that the “fine structure” of turbulent veloc-
ity fluctuations is spatially localized. The spottiness of
the fine structure, first observed by Batchelor and Town-
send [1], has been recognized to be the intermittent oc-
currence of high-frequency contribution in hot-wire
anemometer output signals. They used a high-pass filter
to extract a fine-scale signal from the anemometer output
signal and defined the “flatness factor” of the high-pass-
filtered signal as a quantitative measure of the intermit-
tency.

The flatness factor of the first derivative of turbulent
velocity has been measured by many workers [2-6]. The
velocity derivative flatness factors were much larger than
3.0, and the amount by which it exceeds 3.0 is considered
to be the degree of intermittency. By using a frequency-
band-pass filter, Sandborn [7] found that the spottiness
can be observed in the fine-scale components of turbulent
velocity in the full turbulent part of a boundary layer.

Kennedy and Corrsin [8] experimentally showed that a
high flatness factor does not necessarily imply intermit-
tency. Kuo and Corrsin [9] proposed a direct measure of
the intermittency. The direct measure is an intermitten-
cy factor defined as a fraction of time that a hot-wire
probe ‘“‘sees” a variable in a large amplitude state.

An important theory of intermediate and fine-structure
turbulence was given by Kolmogorov’s (1941) local isot-
ropy and similarily hypothesis [10]. Subsequently,
Landau’s and Lifshitz’s comment [11] upon
Kolmogorov’s 1941 theory attracted many investigators’
attention to the possible presence and importance of large
fluctuations in the instantaneous energy dissipation rate
€. Thereafter, some attempts to include this fluctuation
in theoretical analyses were performed by many workers
[12-18].

In the modification of the Kolmogorov’s original simi-
larity hypotheses, Oboukhov [12] and Kolmogorov [13]
assumed that the logarithm of ,, the average energy dis-
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sipation rate over a volume of linear dimension 7, has a
normal distribution function. They thereby arrived at a
modified expression for the velocity structure function.

Anselmet et al. [19] measured the second- and higher-
order moments of the structure function (velocity
difference). Their experimental result supported neither
the anticipated result from the log-normal model nor that
from the B model (Frisch, Sulem, and Nelkin [18]).

Meaneveau and Sreenivasan [20] measured the r depen-
dence of the gth-order moments of €, and obtained the
generalized dimension D,. They, as well as Anselmet
et al., determined experimentally that the simple (homo-
geneous) fractal models cannot explain the experimental-
ly obtained g dependence of D,. Hosokawa and
Yamamoto [21] reached the same conclusion for isotro-
pic turbulence by direct numerical simulations. To inter-
pret those experimental results [19,20], several models
based on multifractal notions were proposed by many
workers [22-26].

She, Jackson, and Orszag [27] studied the statistics of
velocity fluctuation in isotropic homogeneous turbulence
decaying at moderately large Reynolds numbers, and
they concluded that intermittency evaluated by the flat-
ness factor is basically a dissipation range phenomenon.
Their finding is that the high-amplitude events leading to
the intermittency are embedded in a nearly Gaussian dis-
tribution, in contrast to the assumption of the simple
phenomenological models.

Frequency-band-pass-filtered velocity signals directly
reveal the intermittent phenomenon, which becomes
more obvious at higher band-pass frequencies. So far,
many workers have experimentally and theoretically
researched the intermittency in various ways: through
the band-pass (or high-pass) -filtered signals of turbulent
velocity, the several-order moments of the velocity struc-
ture function, and the fluctuation of the local energy dis-
sipation rate €,.

Using a multifractal approach, Benzi et al. [28] de-
rived the probability distribution function (PDF) of the
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velocity gradients in fully developed turbulence. They
showed that the experimental data are in good agreement
with the PDF predicted by the random 8 model [22]. Re-
cently, another multifractal approach based on the so-
called p model [20] was investigated by Kailasnath,
Sreenivasan, and Stolovitzky [29]. They derived the PDF
Da, Of velocity differences Au(r) between two spatial lo-
cations that are a distance r apart and experimentally
showed that the tails of the PDF’s are closely approxi-
mated by stretched exponential forms
Pa, <exp(—a|Au|™). Then, with decreasing 7, the ex-
perimentally determined stretching exponent m de-
creased monotonically from 2 for the integral scale to 0.5
for the dissipation scale.

Discussions have been going on among many workers
about the intermittency, and there is a common thread to
the search. A common feature is the scale dependence of
the statistics law in three-dimensional fully developed
turbulence. All the discussions on the large flatness of
the PDF, the fluctuations in the local energy dissipation
rate, the scaling exponent of the structure function, and
the stretched exponential form fitting to the tails of the
PDF are related to the scale dependence of the statistics
law. This suggests that the research into the multifractal
nature through the statistics law is of greater importance.

In the present work, the scale dependence of the statis-
tics law is experimentally investigated through the
frequency-band-pass-filtered velocity signals in a wide fre-
quency range from the inertial range to the dissipation
range frequencies. Our experiment has an advantage in
that the intermittent behavior of turbulent velocity can
be investigated individually for the integral scale range,
the inertial range, and the dissipation range.

II. EXPERIMENTAL CONDITIONS

Measurement was made for the following three tur-
bulent air flows:

(1) Grid-generated turbulence. The open wind tunnel
used has a test section 2 m long, 40X 40 cm? in cross sec-
tion. The grid was of a 1-cm-diam round rod, with mesh
size M =4 cm. Measurement was made at several dis-
tances from 10M to 30M. The mean flow velocity U, was
from 5 to 20 m/s at the measuring points.

(2) Turbulent jet flow from a square nozzle. Measure-
ment was made for the two nozzles of cross sections
40X 40 cm? and 10X 10 cm?, at distances above 15 times
the length of the orifice side from the nozzles. The mean
flow velocity was Uy=3 and 15 m/s at the measurement
points on a jet axis.

(3) Turbulent wake behind a circular cylinder. The
cylinders were of D=1, 3, and 5 cm in diameter and
fixed in the orifice plane (40X 40 cm? cross section). Mea-
surement was made at distances from 40D to 200D on a
center line of the wake. In the measurement points, the
turbulence was in the initial period of its decay, and the
measured energy-frequency spectra of turbulent velocity
showed a universal form in their dissipation ranges.

Velocity measurement was made with a DANTEC
56CO01 constant-temperature anemometer. A streamwise
velocity component u (¢) was measured with an x-wire
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probe (5-um-diam, 0.7-mm-long hot wires). The output
signal of the anemometer was band-pass filtered. The
band-pass filter was constructed by connecting a low-pass
one and a high-pass one in a series, and their cutoff fre-
quencies f, were adjusted to the same value (see Fig. 1).
This cutoff frequency f, is a running midband frequency
of the band-pass filter. The low- and high-pass filters
were of an eight-pole Butterworth (maximum flat)
characteristic, and had a rolloff rate of 48 dB/octave.
The band-pass-filtered signal was digitized with 12-bit
resolution at 10f, sampling frequency.

The intermittency factors and PDF’s of the band-pass-
filtered signals were calculated from the records of data
above 6 X 10° points. Indeed, to obtain an accurate form
of the PDF’s, we increased the number of points accord-
ing to the degree of intermittency of the band-pass sig-
nals. The one-dimensional energy-frequency spectra of
u(t), E,(f) were obtained by performing the digital
Fourier transform of its correlation functions measured
with a digital autocorrelator, where f is a frequency.

The band-pass filters used had a 48 dB/octave rolloff
rate (see Fig. 1). A frequency width of the band-pass
filter, Af, is required to be appropriately narrow, but the
form of the response function of the filter by no means
affects our conclusions which were obtained from the ex-
perimental results of the intermittency factor and the
PDF. This was ascertained by the use of another band-
pass filter with a faster rolloff rate of 135 dB/oct.

Since a frequency-band-pass filter works as an integral
operator on its input signal, its output voltage at time ¢ is
determined based on its input signal history over a period
from ¢ — At to ¢, At being roughly of the order of 1/Af.
Incidentally, in the limit Af—0, the output signal is
determined on an infinitely long history; therefore, the
output is technically indeterminable. From a mathemati-
cal viewpoint, the limit Af —0 gives a Fourier com-
ponent to be a constant amplitude sinusoidal wave.
When Af is too large, the output signal also has no inter-
mittent aspect. The appearance of the intermittent facet
requires that the band-pass filter should have an ap-
propriately narrow finite bandwidth.

III. BAND-PASS FILTERED SIGNALS
AND INTERMITTENCY FACTORS

Figure 2 shows the time records of band-pass-filtered-
velocity signals ¥V (¢;f,.) obtained in the jet flow of the

0
Low-pass High-pass
_20 -
@ ~—Band-pass
= -40
c
©
o
_60 5
-80 Ak ol Ll 13l il a1l Al aaay)
oo 01 1 10 100

f/fe

FIG. 1. Frequency response function of the band-pass filter.
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turbulence Reynolds number R; =270, at the midband
frequencies (a) f,=0.07 kHz, (b) 0.15 kHz, (c) 0.70 kHz,
(d) 3.0 kHz, and (e) 10 kHz. Here, the horizontal (time)
and vertical (voltage) axes of each record have been
scaled in the following way. The horizontal axes have
been normalized by the periods 1/f., so that the oscilla-
tions seen in each record have the same periods. The
vertical axes have been scaled such that the maximum
amplitudes of each record are roughly equal to each oth-
er.

Features seen in these records are categorized into the
following two groups (see Fig. 2).

(A): In the low frequencies f.=0.07, 0.15 and 0.70
kHz (a)-(c), which are located in the inertial range, these
three records are similar to each other in the randomly
amplitude-modulated sinusoidal oscillations. This means
that turbulent velocity fluctuations can involve self-
similar structures. There are almost no quiescent parts in
oscillation.

(B): In the high frequencies f,=3.0 and 10 kHz (d,e),
which are located in the dissipation range, the oscilla-
tions have clearly quiescent parts, the growth of which is

tf., and the vertical axes are an
arbitrary scale.

recognized in the higher frequency. This feature is the
spottiness in the fine structure of turbulent velocity.

The characteristics mentioned above are necessarily
reflected in the PDF’s of the band-pass signals. Figure 3
shows the PDF’s p (V) obtained from the band-pass sig-
nals V(t; f,) shown in Fig. 2, where the solid line curves
represent Gaussian functions. At the lowest frequency
(a), the PDF is almost Gaussian. The features of the
PDF’s are likewise classified into the above two
categories: the PDF’s in (a)-(c) are roughly Gaussian, but
the ones in (d) and (e) are clearly non-Gaussian.

The PDF deviates from the Gaussian form with in-
creasing f,. The deviation from the Gaussian PDF arises
in the large amplitudes of the oscillations and, with in-
creasing f., extends to their smaller ones. Finally, as a
consequence of the occurrence of the localized oscilla-
tions, the PDF becomes entirely non-Gaussian (Figs. 2
and 3).

According to Benzi er al. [28] and Kailasnath,
Sreenivasan, and Stolovitzky [29], the PDF features can
be expressed by the stretched exponential form
p (V)= exp(—a|V|™). Figure 4 shows a variation of the
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FIG. 3. PDF’s of the band-pass signals shown in Fig. 2, (a) 0.07 kHz, (b) 0.15 kHz, (c) 0.70 kHz, (d) 3.0 kHz, and (e) 10 kHz, the

solid line curves being Gaussian.
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FIG. 4. Experimentally determined stretching exponent m in
p(V)x exp(—a|V|™), plotted as a function of f.; R; =270 jet
flow at Uy =15 m/s.

experimentally obtained stretching exponent m versus f,.
In the low frequencies (f. <20 Hz) in the integral scale
range, the PDF’s are almost Gaussian, and m is equal to
2. As f, increases over 20 Hz, m decreases monotonical-
ly to 0.5. This decrease becomes more rapid in the dissi-
pation range above 2 kHz. This behavior of m is different
from that obtained by Kailasnath, Sreenivasan, and Sto-
lovitzky for the velocity differences Au (r). In high fre-
quencies over the frequency at which the smallest value
0.5 was obtained, p(¥) did not take the stretched ex-
ponential form expressed by a single exponent m. The
behavior of m is discussed in detail in Sec. VI.

On the other hand, it is known that the deviation of
the PDF from Gaussian statistics is quantitatively evalu-
ated by the amount that the flatness exceeds 3.0. For the
band-pass signals, the flatness factor F is given as

_ A fo1)
(V0P

where the symbol { V") stands for the time average of
Ve (V£ =0/T) [ I[V(t;£,)]"dt, T being the
whole length of the record of V (¢;f ).

The signal V' (¢;f,) can be assumed to be an amplitude-
and phase-modulated sinusoidal oscillation with a central
frequency f, (Fig. 2). If the amplitude and phase of the
sinusoidal oscillation vary slowly in comparison with the
period 1/f, it is expressed as

V(t;f. )= A(t)sin[2mf t +8(2)] .

(3.1

(3.2)

If d&(¢t)/dt is very small in comparison with the angular
frequency 27 f,, the substitution of Eq. (3.2) into Eq. (3.1)
gives F =(3/2) A%1)) /{ 4%(1))>.

Next, let us suppose a perfectly amplitude-modulated
binary signal, the amplitude of which takes a constant
nonzero value in active parts and a zero value in residual
inactive ones. Hereafter, we call such a binary signal an
“on/off signal.” If y is a fraction of the “on” part with
the constant amplitude oscillation, one obtains
F =3/(2y) for the on/off signal.

Here, suppose that a band-pass signal has been con-
verted to an on/off signal according to the method of
Kuo and Corrsin [9]. Then, ¥ is the “on” fraction. It is
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possible to define ¥ with the flatness factor F of the origi-
nal band-pass signal for a suitable setting of an on/off
threshold level:

_ 3 ([V(£07)?
2 ([V(t; 1)

Now, providing that V(¢; f,) obeys the Gaussian statis-
tics, we have y=0.5. However, even when V(¢;f.) is
non-Gaussian, there is a case where y=0.5. In other
words, the on/off representation masks the statistics of
V(t;f.). Hence, it is insufficient to define the degree of
intermittency with the factor y.

To supply this deficiency, it is necessary to take the
higher-order moments of the PDF into account. We
define the 2nth order moments of the band-pass signal,
¥2n (n 22), which stand for the degree of intermittency:

_ @n =1 (VELITP"
T T (o)
where (2n —1)'=(2n —1)(2n —3)...3-1. If V(¢;f,)is a

Gaussian variable, Eq. (3.4) has a constant value such
that y,, =0.5 for all 2n.

Y (3.3)

for n =2,3,4,... (3.4)

IV. THE SCALING PROPERTY
OF THE BAND-PASS SIGNAL

In extremely large Reynolds numbers, the Navier-
Stokes equation for incompressible fluid is invariant un-
der the scaling transformations

r—Ar, U—A"U, and t A"t | 4.1)

where U is fluid velocity at a time space (t,r7), and A is a
positive real number. The scaling exponent 4 is an arbi-
trary real number. For fully developed turbulence, the
scaling transformation invariance (4.1) is guaranteed in a
statistical sense (Frisch [30]), and it is an attribute of the
nonlinear dynamics of the Navier-Stokes equation in the
limit of inviscosity.

Let u (¢) be the streamwise component of the turbulent
velocity. Hereafter, the output voltage fluctuation of the
anemometer to sense temporal variations of u (¢) is denot-
ed in terms of the same notation u (z).

Let A fc( f) be the frequency response function of the

band-pass filter, and let #(f) be the Fourier transform of
u (t). The output voltage of the band-pass filter, ¥V (z;f,),
is expressed as

viesfo= [ B (Ha(Pexplizmfeidf “.2)
with

t‘i(f)=f_°° u (t)exp(—i2mft)dt . 4.3)
The impulse response of the filter, H fc( t), is given by

Hy (0= [ H (flexpli2aft)dt . 4.4)

Substituting Egs. (4.3) and (4.4) into the rhs of Eq. (4.2),
we obtain
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Viesfo=[" Hp (t—thu(tdr . @.5)

Since our experiment has been performed with the
eight-pole Butterworth low- and high-pass filters,
the argument of H fc( f),f, can be replaced by

f/fe Hy (H)=H(f/f.) (Fig. 1). Substituting A(f/f.)

KATSUYAMA, HORIUCHI, AND NAGATA %
form
Viesfo=f. [ © w B =)t (4.6)

This expression corresponds to the wavelet transform of
u(t).

for ﬁfc(f) in the rhs of Eq (4.4), one finds that If t—t(”=ti, then the 2nth order moment
(t)=f,H(f.t). Thereby, Eq. (4.5) is rewritten in the ([V(t;£.)]*") is expressed as
J
© 2n
(s fory=[" - [ f <11 ult —t, >[1 Hf.1,)dt, . 47)
- i=1 i=1
Carrying out the scaling of f, with A, we have
(VAf P =af o [©  [7 <II ult—t, )>HH Af.t;) (4.8)
- i=1
If At;=7; and A1, =7, —7; fori =1,2,...,2n, then Eq. (4.8) gives
(VAP = f [ Gy |5 ATy [1 H(f.r; 4.9)
i=1
with
1 _ T, T, T, Ton = T;
Gzn —):ATij —<u t— u|t— )\' ‘ult— }\' > . (4.10)
[
Here, A7;=0, and G,, is a 2n-point time correlation  have
function of u (1). ) -
(VA )P =Cy f. T, (4.13)

We postulate that the correlation function G,,, in the
statistical sense, has a scaling property insofar as f. is lo-
cated in the inertial range:

—1-A'r

Gy, |7 ATy | =R TGy, (ATy)

(4.11)

where £,, is the scaling exponent of the function G,,.
This assumption indicates that G,, is a homogeneous
function, such as f(Ax)=g(A)f(x) with g(L)=A%, s be-
ing an arbitrary real number. Then, G,, is assumed to be
a self-similar function.

The scaling property of G,, corresponds to that of the
2nth order structure function {|u (f)—u(t —At)|*"), At
being a time difference. There is, however, a great
difference in that the 2nth order structure functions in-
Volve , only two-point correlation functions
(u S(t—At)), where s+s'=2n for

1 2,...,2n —1.

Substituting Eq. (4.11) into Eq. (4.9), we obtain from

Eq. (4.7)

(VALY =1 (V£

This expression means that the moments {[V (¢;f.)]*"),
in the statistical sense, have a self-similar character,
which is a feature of turbulent velocity in the inertial
range.

If Af.= fZ in Eq.
(V@ fIPD =V LIPS

(4.12)

(4.12), we get
on Hence, we

C,, being a constant. Thereby, Eq. (3.4) is rewritten in
the form

Y2n dfc‘"§2+§2n .
The scaling exponents §,, are to be experimentally deter-
mined, but it becomes technically difficult to accurately
determine ¢,, for 2n > 12. These results (4.13) and (4.14)
were experimentally investigated.

We will remark on the following two cases, complete
similarity (CS) and quasisimilarity (QS). (CS): The self-
similarity is completely preserved under the assumption
of the scaling transformation invariance (4.1):

Gon=2nh .

(4.14)

(4.15)

The statistics law of V (¢;f.) is preserved for all f, in the
inertial range. (QS): The scaling exponent §,, is a non-
linear function of order 2n. The statistics law of V(¢ f,)
is never preserved, and it has the multifractal nature
which is characteristic of three-dimensional turbulence.

Applying Eq. (4.15) to Eq. (4.14), one sees that y,, is
independent of f,: &,, —n&,=0. Then, the statistics law
of V(t;f,) is preserved, and the sinusoidal variations of
V(t;f.), therefore, must, in the statistical sense, be “com-
pletely” self-similar to each other among the ones with
different values of f,. On the other hand, in the case
(QS), the statistics law is never preserved even in the iner-
tial range; therefore, the stretching exponent m has to de-
pend on f, as shown in Fig. 4.
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V. EXPERIMENTAL RESULTS

Figure 5 shows normalized one-dimensional energy-
frequency spectra E,(f)/(v’k;) obtained for the jet
(R, =270) and the grid-produced turbulence (R; =13).
Here, v is the kinematic viscosity of the fluid, and &, is
the Kolmogorov dissipation wave number. The magni-
tude of k; was determined from the measured spectral
distribution E,(f). The inertial range of E,(f) is roughly
defined by f, and f,;/10, where f,=U,/A with an in-
tegral scale A determined from the measured autocorrela-
tion function of u(¢), and f;=Uyk,/27. Both ends of
the inertial range have been marked with the arrows.

Figure 6 shows the log-log plots of y, versus f,/f, for
the turbulent flows with R, =11-270, where the arrows
indicate the high-frequency ends of the inertial ranges,
f4/(10f,). Then, y, was calculated from Eq. (3.4).
When R, > 40, v, has different features in three regions,
which are the energy-containing range, the inertial range,
and the dissipation range of E(f).

In the energy-containing (integral-scale) range
(f.>fo), 74 is nearly equal to 0.5, and V(t;f,) presents
the Gaussian PDF as seen in Fig. 2(a). In the inertial
range (f, <f, <f;/10), v, decreases with increasing f..
When R, >40, log,y¥4 can be represented by a linear
function of logo(f. /fo): 74 has a scaling range in which
the power law (4.14) holds. When R, is so small that
E,(f) cannot have the inertial range, ¥, has no scaling
range. When R, is sufficiently large, G, is assumed to be
asymptotically the homogeneous function. We will later
have further discussion about this scaling property, in-
cluding the higher orders of y,,.

In the dissipation range (f. > f;/10), v 4 has no scaling
property, and decreases rapidly with increasing f,. Such
rapid decreases indicate a remarkable change in the
statistics law of V' (¢;f.). This is obvious from the fact
that the stretching exponent m decreases more rapidly
than in the inertial range (Fig. 4). It seems that the de-
crease in ¥, is a little more rapid when R, is smaller.

4
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FIG. 5. Normalized one-dimensional energy-frequency spec-
tra; jet (R; =270) and grid (R, =13) flows.
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FIG. 6. Plots of y, vs f./fo. Here, the arrows indicate the
positions of f;/10. (0) R,=270, Uy=15 m/s; (A) R, =124,
Up,=24 m/s; (O) R,=71, Uy=12.8 m/s; (+) R,=4l,
Uy=26.8 m/s; (A) R;=11, Up=3.1 m/s; (X) R;=13,
Uy,=4.7m/s.

The change in the PDF is basically caused by the growth
of quiescent parts such as those in Figs. 2(d) and 2(e).

Figure 7 shows the log-log plots of ¥,, versus f.. The
log-log plots have the linear region for all the given or-
ders 2n. The slopes of the straight lines are steeper in the
higher orders. The §,, exponents in Eq. (4.12) were
determined from the linear region, but the {, exponent
was calculated from the PDF.

Figure 8 shows the plots of &,, as a function of 2n, for
the jet (R, =270,66) and the wake (R,=124,71) tur-
bulent flows. These results have been compared with
those of Anselmet et al. [19] for the velocity structure
function. The scaling exponent §,, is nonlinear for the
order 2n. We have the case (QS) realized. The inertial
range intermittency of the band-pass signals asymptoti-
cally has the scaling property expressed by Eq. (4.14).
The &,, curves, including the one by Anselmet et al.,
have a tendency to get nearer to the straight line of
§,, =2nh with the increase in R,. This suggests that the
linear exponent £,, =2nh, the case (CS), is materialized in
the limit R, — o0.

100 T T

10-1_

Yan

1072 3

1 1 1 1
10! 102 103 104
fc (Hz2)

FIG. 7. Log-log plots of y,, vs f.; R;=270 jet flow at
Uy=15m/s.
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FIG. 8. Plots of {,, vs 2n; (+) scaling exponent {,, of a
structure function (Anselmet et al. [19], R, =515 duct flow);
our experimental results; (®) R, =270, (A) R,=124, ()
R, =71,and (V ) R, =66.

VI. CONCLUDING REMARKS

We conclude from the experiments described above
that the multifractal character (intermittency) is inherent
in the scale-dependent deviation of the statistics law from
the Gaussian process. The scale dependence of intermit-
tency is classified into the three categories: (1) the (near-
ly) Gaussian process, (2) the non-Gaussian process, and
(3) the spotty process.

(1) In the energy-containing range, the intermittency
factors y,, are nearly equal to 0.5 at all given 2n. The
band-pass signals are nearly Gaussian. All the turbulent
flows used in our experiment exhibited this Gaussian pro-
cess irrespective of R;(=11-270). We must, however,
add that it is very difficult to determine whether the ran-
domly amplitude- and phase-modulated band-pass signals
in this range are due to a mechanism of intermittency.

(2) In the inertial range, the band-pass signal becomes
gradually more intermittent with increasing f,, so the in-
termittency factors y,, decrease dccordingly. The de-
creases in y,, obey the scaling law expressed by Eq.
(4.14), and the inertial range intermittency is character-
ized by the scaling law.

The deviation of the PDF from the Gaussian statistics
is characterized by the nonlinearity of the scaling ex-
ponent §,,. This deviation, an inertial range attribute,
refuses the homogeneous fractal leading to the linear ex-
ponent §,, =2nh. As shown by Benzi et al. [28] and
Kailasnath, Sreenivasan, and Stolovitzky [29], the
stretched exponential form of the PDF can be explained
by the multifractal phenomenon. Thus, the behavior of
the two exponents §,, and m is related to the multifractal
(intermittency) of turbulent velocity.

The decrease in the stretching exponent m with in-
creasing f, indicates that the envelopes of the band-pass

signals deform into sharper forms at larger amplitudes.
The spottiness follows the sharpening of the envelopes,
producing the dissipation range.

(3) In the dissipation range, the intermittency is the
well-known spottiness, and the PDF continues deviating
very greatly from the Gaussian with an increase in f,.
This range has no scaling property. The breakdown of
the self-similarity accompanies the rapid decreases in y,
and m with increasing f., and brings about a drastic
change in statistics law [Fig. 3 (d),(e)].

In the dissipation range, it is considered that the
viscous effects on the turbulent fluid motion, the viscous
energy dissipation, and the work by the viscous shear
stress, bring about the drastic change in the statistics law.
On the basis of the notion that the intermittency is ac-
companied by the change in the statistics law, it is quite
natural that turbulence becomes notably intermittent in
the dissipation scale range.

Complete self-similarity means that the linear scaling
exponent §,,=2nh underlies the scaling transformation
invariance (4.1) in the limit v—O0 (i.e., R; — o). (As an
aside, Kolmogorov’s 1941 theory indirectly referred to
the linear exponent, namely, to the “complete” self-
similarity [31].) Since the fluid is viscous, the turbulent
fluid motion cannot, even in the statistical sense, admit
the completely self-similar structure.

The self-similarity (4.12) is asymptotically maintained
in the inertial range in which the viscous effects are negli-
gible. On the other hand, in the dissipation range, the
viscous effects become important, and breakdown of the
self-similarity (4.12) occurs. This breakdown becomes
more noticeable for smaller scales in which the energy
dissipation becomes more and more important.

Since a definite boundary cannot exist between the
inertial range and the dissipation range, the spottiness of
the band-pass signal begins to occur in the high-
frequency side of the inertial range. The breakdown of
the self-similarity, therefore, is not limited to within the
dissipation range and begins more or less to occur in the
inertial range. It is considered that the change in the
statistics law is due to the fact that the Navier-Stokes
equation for incompressible “viscous” fluid flows cannot
be invariant under the scaling transformations (4.1).

In summary, intermittency describes the scale-
dependent change in the statistics law. Our thought
mentioned above has been already referred to in the pre-
vious papers about a hierarchical model [31,32].
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